products with titanium dioxide

Duan et al. administered 125 mg/kg BW or 250 mg/kg BW of anatase TiO2 (5 nm) intragastrically to mice continuously for 30 days. The exposed mice lost body weight, whereas the relative liver, kidney, spleen and thymus weights increased. Particles seriously affected the haemostasis of the blood and the immune system. The decrease in the immune response could be the result of damage to the spleen, which is the largest immune organ in animals and plays an important role in the immune response. Powel et al. demonstrated that TiO2 NPs may trigger immune reactions of the intestine after oral intake. They showed that TiO2 NPs conjugated with bacterial lipopolysaccharide, but not TiO2 NPs or lipopolysaccharide alone, trigger the immune response in human peripheral blood mononuclear cells and in isolated intestinal tissue. This indicates that TiO2 NPs may be important mediators in overcoming normal gut-cell hyporesponsiveness to endogenous luminal molecules, which may be particularly relevant to patients with inflammatory bowel disease, which is characterized by an abnormal intestinal permeability.

...

The aim of this work was to examine particularly the Degussa P25 titanium dioxide nanoparticles (P25TiO2NPs) because they are among the most employed ones in cosmetics. In fact, all kinds of titanium dioxide nanoparticles (TiO2NPs) have gained widespread commercialization over recent decades. This white pigment (TiO2NPs) is used in a broad range of applications, including food, personal care products (toothpaste, lotions, sunscreens, face creams), drugs, plastics, ceramics, and paints. The original source is abundant in Earth as a chemically inert amphoteric oxide, which is thermally stable, corrosion-resistant, and water-insoluble. This oxide is found in three different forms: rutile (the most stable and substantial form), brookite (rhombohedral), and anatase (tetragonal as rutile), of these, both rutile and anatase are of significant commercial importance in a wide range of applications [3]. Additionally, the nano-sized oxide exhibits interesting physical properties, one of them is the ability to act as semiconducting material under UV exposure. In fact, TiO2NPs are the most well-known and useful photocatalytic material, because of their relatively low price and photo-stability [4]. Although, this photoactivity could also cause undesired molecular damage in biological tissues and needs to be urgently assessed, due to their worldwide use. However, not all nanosized titanium dioxide have the same behavior. In 2007, Rampaul A and Parkin I questioned: “whether the anatase/rutile crystal form of titanium dioxide with an organosilane or dimethicone coat, a common titania type identified in sunscreens, is appropriate to use in sunscreen lotions” [5]. They also suggested that with further study, other types of functionalized titanium dioxide could potentially be safer alternatives. Later, Damiani found that the anatase form of TiO2NPs was the more photoactive one, and stated that it should be avoided for sunscreen formulations, in agreement with Barker and Branch (2008) [6,7].

...

Overall, the R2196 Titanium Dioxide Factory is a prime example of a modern, sustainable, and customer-focused manufacturing facility. Through its dedication to quality, sustainability, innovation, and customer satisfaction, the factory continues to be a driving force in the titanium dioxide industry. With its state-of-the-art technology, skilled workforce, and unwavering commitment to excellence, the R2196 Titanium Dioxide Factory is poised to remain a key player in the global market for years to come.

...